UK in SFX @ the EU XFEL

James H Naismith
David I Stuart
Jan Y Lowe
Martin A Walsh
Henry N Chapman
On behalf of the UK Structural Biology Community

Who am I?

- Trained as a chemist, work as a structural biologist, been in St Andrews since 1995
 - google scholar naismith
 - ResearcherID H-3408-2012
 - SCOPUS_ID 7005691850
- Led CCP4 (UK structural biology community software effort) for 7 years, prior member of its executive
- Previous member of MX beamline planning,
 Diamond SAC and now non-Exec Diamond Board

History of UK MX

- The UK has a proud history in structural biology
 - Perutz/Kendrew first protein
 - Hodgkin first hormone
 - Philips first enzyme
 - Walker & Ramakrishnan recent Chemistry Nobel
- The UK structural biology community has been at the forefront of innovation, often working together
 - SRS early synchrotron for MX
 - CCP4 collaborative effort
 - INSTRUCT EU wide community, UK engaged
 - BM14 MX beamline run by UK community

Genome revolution

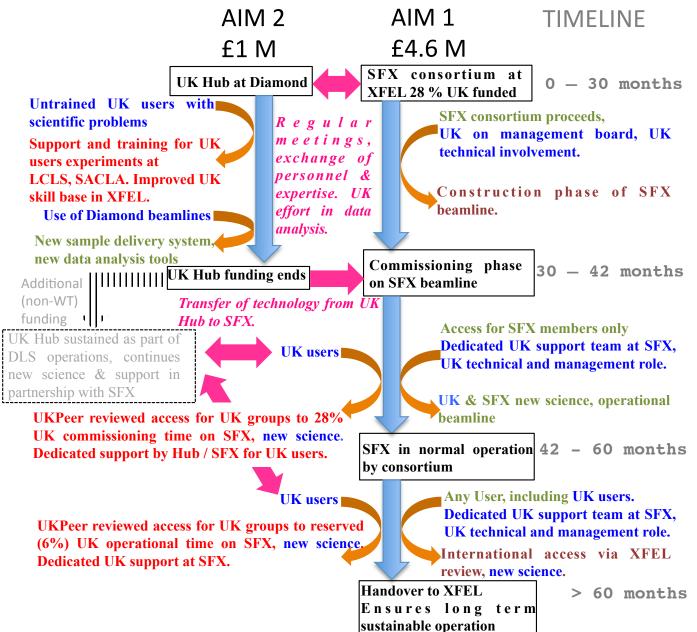
- Structural biology was recognized by Whitesides in his EPRSC report as a particular strength in the UK
- The genome revolution demands much higher throughput on all downstream approaches
- Biology as a system requires integrating information to really understand process, hence predict and modify it (lots more data)
- Next generation enzyme chemistry will move to shorter timescales to understand bond breaking and making

Challenges for MX

- The most important biological systems complexes, membrane proteins - are barely tractable to current technologies
- Crystals are often too small or poorly ordered
- Current 3rd generation sources destroy samples, we are limited by radiation damage
- Either we catch up or face irrelevance in biomedical science
- Our belief is more photons, more resolution, more information

XFEL potential

- See Henry Chapman's talk
- Communityopen day in November, over 40 group leaders (talks from Henry, Richard Neutze and Ilme Schlichting); science focused
- The UK structural community decided
 - XFEL remains an unproven but promising technology for MX
 - Plausible it could transform structural biology
 - The UK cannot afford to sit out
 - The UK could help drive its development


Opportunity

- Henry Chapman and Professor Massimo Altarelli (letter) made the UK MX community an offer
 - Join the SFX consortium despite the UK as a whole sitting out the XFEL
 - The SFX model guarantees UK access to XFEL; thus precompetitive access to develop expertise
 - SFX works by shareholder, total cost approx £16.5M
 - UK community decided to bid to become the major shareholder of SFX, 28% (depends on exchange rate)

The UK plan

- UK MX groups are not doing well at securing XFEL time at SACLA or LCLS
- A serious risk is that UK fails to capitalize on the new technologies because we lack expertise
- We decided therefore to adopt a two pronged strategy
 - Create a UK HUB at Diamond
 - Join SFX, offering our expertise as a consortium member

The concept

Mechanics

- At open meeting all interested life science RC's present (STFC, BBSRC, MRC) and Wellcome Trust
- Dialogue with and between possible funders began before meeting, but crucially funders took note of attendees and discussion at meeting
- At end of meeting, funders discussed options for bids
- Colin Miles "BBSRC never rejects good ideas. It rejects grants but not good ideas."

Just a FECing minute

- BM14 funded in part by BBSRC was old model
- RCUK pay 80 % of FEC
- No UK university could afford or would contemplate paying 20 % of capital cost of a beamline in Germany
- DESY has no overhead; this helps
- RCUK & WT solved problem, thanks to Tom (WT),
 Colin (BBSRC) and Adam (MRC)
- Highlights huge advantage of our history of community engagement with RCUK and WT; BM14

Back on track

- Wellcome and RCUK agreed that WT would lead the peer review process; no double jeopardy
- Preliminary strategic award submitted 17th
 February; approved for full application April
- Full application submitted June 3rd
- RCUK potential funders (BBSRC and MRC), now carry out their evaluation of strategic fit with their portfolios. STFC fully engaged
- Decision point Autumn 2013

Community bid

- 60 group leaders wrote letters of support
 - Critical are letters from world leaders in the UK
 - Large labs York, LMB-Cambridge, Oxford, IC all strong supported bid
- All group leaders received copies of preliminary application before asking for LoS
- Final application put on semi public website for all group leaders to download
- JHN writes to all group leaders to keep them informed

Aim 1

- Science largely covered by Henry Chapman
- UK will fund costs at DESY; managed by SFX board, not managed day to day directly by UK
- UK will sit on management board (JHN) and propose technical board membership
 - Crucially management board is by share but technical board is by merit / ability
 - See real synergies between Diamond and XFEL at technical level
- Some partners already in, UK would be financial tipping point (as penguins all jump together)

- 6 months: Recruitment of personnel
- 12 months: Optical design choice finalised, full technical review completed, construction underway.
- 18 months: Detailed plan for commissioning, construction of hutches.
- 24 months: Front end in operation, first beam (not refocused), begin installation of sample delivery system.
- 30 months: First detector element in place, refocused beam in hutch, commissioning of SFX begins, UK users arrive
- 36 months: Sample delivery commissioning completed, DAQ system fully operational, additional detector module installed.
- 42 months: Full detector installed, SFX in operational mode, preparation made for laser installation.
- 48 months: Design begins of next generation of sample delivery system.
 54 months: Second generation of data analysis software (partnership with Diamond)
- 60 months: Grant ends, XFEL takes over beamline, long term sustainability

Staffing (UK's 28%)

Post 3	SFX	Senior
	Beaml	ine
	Scient	ist,
	DESY	
	employ	yee

Post 6	SFX PDRA
	Scientist,
	DESY
	employee

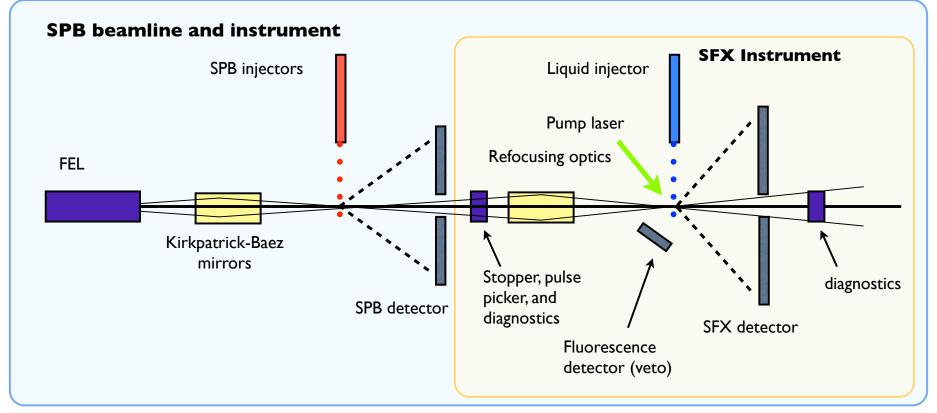
Post 4	SFX	
	Beamline	
	Scientist	2,
	DESY	
	employee	

Post 7	SFX PDRA
	Scientist 2,
	DESY
	employee

Post 5	SFX Engineer,
	DESY
	employee

£1.7M UK cost

(b) Materials and consumables (description)	Costs
Commissioning costs of beamline (28% UK share)	255000
Operation costs of beamline (28% UK share)	666000


£0.9M UK

Type of equipment	Equipment specification	Preferred manufacturer/ supplier (if known)	Maintenance contract duration (months)	Cost of maintenance contract	Number of items	Cost per item	Total cost	Contribution from other sources	Amount requested
XFEL AGIPD X-ray detector	This is the UK share (28%) of the cost of the detector for the beamline	AGIP consortium	60	0	1	1350000	1350000	973000	377000
XFEL Data acquisition rig	This is the UK share (28%) of the cost of the detector for the beamline	DESY	60	0	1	835000	835000	601000	234000
XFEL Data storage	This is the UK share (28%) of the cost of the detector for the beamline		60	0	1	1020000	1020000	733000	287000
XFEL Hutch for SFX	This is the UK share (28%) of the cost of the detector for the beamline	XFEL	60	0	1	561000	561000	404000	157000
XFEL Beamline components	This is the UK share (28%) of the cost of the detector for the beamline	DESY	60	0	1	564000	564000	405000	159000
XFEL Beamline optics	This is the UK share (28%) of the cost of the detector for the beamline	DESY	60	0	1	386000	386000	278000	108000
XFEL Sample and	This is the UK	DESY	60	0	1	736000	736000	530000	206000
XFEL Compatibility with pumping laser	This is the UK share (28%) of the cost of the detector for the beamline		60	0	1	475000	475000	342000	133000
XFEL Beamline diagnostics	share (28%) of the cost of the detector for the beamline		60	0	1	425000	425000	306000	119000
XFEL Sample delivery robot	This is the UK share (28%) of the cost of the detector for the beamline	DESY	60	0	1	775000	775000	558000	217000

£2M UK

Equipment total 7100000 5100000 2000000

SFX dedicated and parasitic modes

- SFX energy range is 3 to 16keV; suitable for molecular replacement or refinement
- The detector will accept scattering angles 2θ up to about 60⁰ at 5cm from sample (4 Å at 3keV, < 1Å at 16keV)

UK access arrangements to SFX

- Peer review; no sweetheart deals for applicants
- Peer review process will be run through Diamond on BM14 model
- We are contemplating a UK BAG model for access to other X-FELS
- Commissioning: 18 days dedicated, 18 days parasitic
- Operational time: 6 days dedicated and 6 days of parasitic

Operational mode

- In addition to reserved time, UK can bid for X-FEL peer review time (80 % of instrument time)
- SFX supports users, still to be defined
- Jan 2019 X-FEL will take over operation long term sustainability
- Costs are SFX risk, X-FEL have validated estimates but careful assessment is needed throughout

The UK HUB

- Funded for three years in first instance
- Continuity plan involves Diamond taking over UK Hub
- Community supported
 - Facilitate the use of XFELs by the UK community, especially the SFX instrument when it comes online. XFEL time limited we need to use it well.
 - provide a development centre for sample-related hardware and data handling software developments.

Costs of UK Hub

Post 1	UK XFEL Hub PDRA
	scientist, 3 yrs at Diamond

£370K staff costs 3 years

Post 2	UK XFEL Hub
	Beamline
	scientist, 3 yrs
	at Diamond

UK Hub Liquid stream injector		University and	60	0	1	100000	100000	100000
UK Hub computing storage	Store data from UK experiments		60	0	1	100000	100000	100000
UK Hub Computer cluster	Process data		60	0	1	100000	100000	100000
UK Hub High bandwidth networking	Transmit data		60	0	1	100000	100000	100000

£400K equipment cost

Consumable of UK test injector	125000
General lab consumables UK hub	5000
Travel of UK beamline scientist, post-doc and UK users to XFEL for three years, over 20 trips	100000
Traval of LIK applicants to VEEL	10000

£230K consumable cost

UK Hub data processing

- Focus on getting better data out of images as quickly as possible
 - Many images cannot be processed
 - Statistics are problematic, due to partiality, intensity or sigma are currently mis-estimated
 - Typical of cutting edge technology
 - Processing is currently far from real time
 - We know this is often crucial for good experiments and efficient use of beamlines

UK Hub sample preparation

- Sample preparation and loading, currently need very high volumes of crystal slurry, challenging often clogs
 - Purchase current state of the art and start work with it
 - Evaluate competing approaches
 - Load up UK samples for shipment
- Provide collaborative support to UK groups to use SACLA and LCLS; then SFX when onstream
- Focal point for UK expertise, critical to ensure we use scare time efficiently

Synergies with Diamond

- Key to have support of Diamond
 - CEO very supportive of UK community
 - Run peer review, 'trusted brand'
 - Provides access to microfocus beamline, upcoming
 VMX beamline will handle too small to see xtals
 - Hub of EU funded data processing effort, pipelining well established
- Leverages significant UK investment in high volume data handling required for SFX AGIP output of 24 GBs⁻¹
 - (from CERN) RAL is point of presence
 - Diamond detectors already generate > 1GBs⁻¹

Timeline and milestones

- 3 months: Peer review process implemented, first call for proposals.
- 6 months: Recruitment of personnel, set up lab space; start building sample jet delivery system.
- 12 months: 6 month trial allocation period completed. Processes reviewed and improved, UK XFEL Block Allocation Group (BAG) system implemented.
 - 18 months: UK sample jet in routine use, improved delivery system in development.
- 18 months: Beta testing of data analysis pipelines, using UK data from first allocation periods. 24 months: Data reduction and analysis pipelines released.
- 30 months: Coordinate first user visit to SFX.
- 36 months: Second generation sample delivery system implemented at UK hub.
- > 36 months: Technology transfer to SFX, Hub integrated into Diamond.